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ABSTRACT

A brief review of selected in situ stress studies
is presented. Pertinent geomechanical factors and
rationale for stress trajectory characterizations are
discussed in the context of natural fracturing in geo-
logical formations. Examples with structural cross
sections incorporating the influence of the Rome Trough]
are identified and potential mechanisms for in situ
stress reorientation and tectonic relief across se-
lected regions in the Appalachian Plateau Province in
West Virginia are given. Detailed finite element
stress simulations and stress ratios associated with
cross sections through Southeastern Kanawha County
extending from the Warfield anticline to the Cabin
Creek syncline are also reported. A discussion of
these results and their correlation with available
data and salient structural features is also given.
In addition, the role of stress ratios, using a com-
pressive-shear failure criterion, is emphasized in
relation to the natural fracture systems in the De-
vonian shales.

INTRODUCTION

The phenomenological theories of gas production,
from a rock mechanics vantage point, are related to
the inherent characteristics of the natural fracture
system and their subsequent linking with induced frac-
turing. A detailed knowledge of the prevalent reser-
voir in situ stress fields and gradients can provide
fundamental data regarding preferential orientations,
governing mechanisms, and optimum design of stimula-~
tion treatments [1,2]. Several stress mediated me-
chanisms that generate endogeneous and exogeneous
fractures have been postulated in the literature [3,4],
A presentation of basic concepts for the analysis of
fracture and fault development has been given by Bom-
bolakis [5]. Considerable research has also been con-
ducted on various methods for mapping fractures/joints,
surface measurements, directional physical property
measurement of oriented cores, mini-hydraulic fracture
tests and their correlation with in situ stress magni-
tudes and orientations [6,7,8,9]. A comprehensive
compilation of pertinent work related to the Eastern

References and illustrations at end of paper.

Gas Shales Project has been recently conducted by
Cliffs Minerals [10]. Representative relationships
between structure and stress ratio were developed at
the Morgantown Energy Technology Center with a modi-
fied form presented in Reference [10]. Based on a
study by Lewin and Associates, Inc., the stress ratio
index appears to serve as a valid indicator for
fracture spacing [11].

A study on the influence of burial history on
subsurface horizontal stress variation formations
with different mechanical properties has been reported
by Prats [12]. This work demonstrates the effects
of creep, temperature, material property and strain
alterations during burial on the current stress state.
A related investigation, using laboratory determined
material properties, correlates field measured hori-
zontal stress data with overburden induced stresses
associated with the slope of the confining stress-
axial stress curve and vertical temperature gradients
[13]. Use of this in situ stress data base for
granite, sandstone, limestone shale, and salt as a
tool for optimizing fracture containment design has
been advanced by Voegele et al. {14]. The in situ
stress difference (0 -0, ) versus ©
plots can be re—inte9¥¥%§2§D§§ t§¥%§ of stressﬂgggios
and are more realistic indicators than Poisson ratio
deduced values. An evaluation of the effect of
Poisson's ratio on various rock material properties
has been conducted by Kumar [15].

In this paper, previous modeling work [16,17]
on stress trajectory characterizations across the
Appalachian Plateau Province in West Virginia is used
as a basis for studying, in site specific detail, the
influence of the Rome Trough and mechanisms for in
situ stress relaxation. Results from sample stress
trajectory simulations of cross sections through
Southeastern Kanawha County, West Virginia from the
Warfield anticline to the Cabin Creek syncline are
reported. A discussion of these results and their
correlation with available data and key geomechanical
features is presented. Also, the dominant role of
the stress ratio, using a compressive-shear failure
criterion with Devonian shale internal friction and
ultimate compressive strength properties is demon-
strated, in relation to natural fracturing. Finally,
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other generic applications of the developed met hodolog
are identified.

GEOMECHANICAL MODEL DEVELOPMENT

Feasibility studies on stress trajectory simula-
tions for model representations of selected regions

Appalachian basin,
[16,17].
basin were modeled by rigid basement structures con-
taining potentially active faults overlain by passive
sedimentary cover with potential slip zones along bed-
ding planes.
of the sedimentary cover and the depths of this cover
were considerably smaller than the modeled horizontal
distances (plane strain model).
the stress relieving effects of buttress and slip me-
chanisms and the applicability of the finite element
approach as a tool for the

in reservoir stratigraphic formations with defined
boundary conditions, material property data, layered
media descriptions, and interface conditions.
puted stress ratlos can
on the magnitude of tectonic relief, the extent of
fracturing in gas producing zones, and choice of opti-
mum stimulation treatments. The cited geomechanical
studies demonstrate that the maximum horizontal stres-
ses over the Rome Trough parallel the trend of the rif
system and are related to the basement faulting. Also
the presence of tectonically relaxed zones, obtained
for several basement interaction phenomenological
models, suggests that the subsurface Rome trough in-
fluences the modern state of stress in the target pay
zones (e.g. Brown and Black Devonian shales).

have been previously investigated

Based on the aforementioned studies, the region
selected for the development of a detailed geomechani-
cal model is the Cabin Creek district in Kanawha
County, West Virginia. Occupying an area of 235 squar
miles, it is located South and Southeast of Louder,
Malden, and Elk district in the Southeastern portion o
the county. Good gas production has been found above
the Devonian in the Big Line and Weir Sand. Near the
surface, Cabin Creek has two dist inguishing structural
features; the Warfield anticline to the Northwest and
the Wake Forest anticline to the Southeast. These
anticlines were selected as bounds for the geomechani-
cal model cross-section locations defined in Fig. 1.
Analyses of these four cross sections have been con-
ducted by Andrews [18] based on isopach and structural
contours, and seismic data provided by Kulander [19].
Figure 2 illustrates details of a representative cross
section (#1) with the Cambrian clastic and carbonate
units thickening appreciably in the Rome trough. A ke
to this cross section is provided in Table I. Cross
section #1 is character
features:

(i) A uniformity in oriemtation of the correspond
horizontal stress trajectory

(ii) division of a coal fracture domain

(iii) eastern flank of the Rome trough.

boundary and

The approach to conducting the model simulations
for this investigation considered the application of
boundary tectonic loads based on in situ stress mea-
surements and parameter sensitivities associated with
material property variations and boundary conditions.
Gravitational load models with horizontal confinement
were initially studied followed by various tectonic
load simulation models to represent different end con-
ditions and the influence of a decollement surface in

overlying the Rome Trough, a buried rift system in the

Geological structures within the Appalachian

The basement faults formed the boundaries

This work demonstrated

analysis of in situ stresses

The com-~
provide diagnostic information

ized by three important geologic
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the Upper Silurian. The initially selected material
property values corresponding to the finite element
discretized strata presented in Fig. 3 are provided
in Table II.

GEOMECHANICAL MODEL SIMULATIONS AND RESULTS

The model simulations were conducted using an
in-house developed finite element program for gecme-
chanical problems. The basic gravity load model en-
tailed use of the initial property values from Table
II, roller supports at the Northwest (NW) and South-
east (SE) ends, and complete displacement conf inement
at the basement as shown in Fig. 4a. The computed
stress ratios in the Devonian shale for this bench-
mark case are also shown in this figure with the
principal stress fields illustrated in Fig. 4b.
should be noted that tension zones are evident in
selected Devonian shale regions, in the absence of
external horizontal tectonic activity. Additional
simulations of this baseline model were also conducted
to parametrically examine the influence of elastic
modulus reduction and Poisson ratio variation [18].
No significant parametric sensitivity trends were
identified.

T+
it

The subsequent tectonic load models were con-
ducted to examine sensitivities to various end load-
ing conditions, material property values, and layer
interface conditions. As revealed in Fig. 5 and the
accompanying Table III, the stress ratio (K) de-
creases dramatically from the SE to MW with the mini-
mum horizontal stress related to the thrust faulting
in the Valley and Ridge Province from the east. The
depth to which this tectonic influence exists is un-
certain. However, the existence of a decollement
surface in the Upper Silurian was interpreted to in-
dicate that the tectonic load extended to Unit 6.
Below Unit 6, the effect of the tectonic load on the
Devonian shale (Unit 6) is assumed to be insignifi-
cant with gravitational effects dominating. Two
different approaches were utilized for the tectonic
load model simulations. Firstly, tectonic loads
were specified at both the NW and SE extremities and
the resultant stress ratios and trajectories were
obtained. Secondly, an attempt to force a stress
ratio of K=0.7 at the NW end was made by varying the
material properties, tectonic loading at the SE
boundary and layer interface conditions.

Figures 6a and b reveal the computed Devonian
shale stress ratios and principal stresses, respec-
tively for the indicated loading with prescribed
stress ratios of 0.7 at the NW and 1.0 at the SE.

A uniform value of v=0.25 and E reduced 25% below
Unit 4 revealed minor changes in the principal stress
magnitudes [18]. Significant tectonic relief 1is
evidenced in the Devonian shale corresponding to the
column elements 25 through 34 for all these simulated
cases. As a follow-on to these studies, the stress
response of the gselected cross-section under a com-
bination of gravitational and tectonic loading from
the Southeast (K=1) was studied, using the initial
material properties, with the Northwest end con-
strained as shown (Fig. 7a). Using this loading
with a 90% reduced elastic modulus in Unit 6 (to
simulate the decollement interface) and Poisson's
ratio v=0.30 in Units 3 through 5, the results are
revealed in Fig. 7b. Extensive fracturing occurs

{n Devonian column elements 30 through 32 using the
compression-shear failure criterion presented in the
next section. Results using an interface joint
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element with different stiffness values between Units
5 and 6 yielded inconclusive results, although simi-
lar stress relaxation mechanisms were revealed. The
final set of model simulations involved the use of a
different stress ratio (K=2) at the Southeast end.
The change in boundary stress ratio from K=1 to K=2
resulted in significant stress ratio changes only in
the vicinity of the applied Southeast loading. This
result suggests that the basement influenced stress
responses mask the effects of applied horizontal tec~-
tonic loading from the Southeast. The effects of
uniform tectonic stress imposed from the surface
superposed with gravitational loading effects can
also be similarly studied.

DISCUSSION AND CONCLUSIONS

Prior to a discussion of the results, it is
desirable to present rock failure criteria in terms
of the prevailing stress ratio, overburden stress,
and material properties.

The compressive-shear failure criterion for rock
is defined by

/2 1/2_,

¢, = oy-0, LG+ 2 11 GE Y 2 (1)

where, for our applications, ¢, is the overburden
stress (largest compressive stress), 0y is the mini-
mum horizontal stress, C, is the axial compressive
strength of the rock, and ug is the surface fracture
coefficient of friction. The angle at which fracture
initiation will occur is defined by 8=0,5tan~1(1/ug)
and is measured from the axis of the overburden
stress. Crack propagation with this loading will be
a curved path (crack kinking) out of the plane of the
pre-existing crack and will be governed by the pre-
vailing principal stresses [20].

In addition to Eq.(1), Griffith shear and ten-
sile fracture criteria can also be specified. How-
ever, the case represented above is most relevant to
these investigations. Eq.(1) can be rewritten in
the form

0, = ¢ /[L-K((2D Y 2y a2+ 2y ) @

where the stress ratio K = 03/0 . Table IV yields
the computed compressive streng%hs required for rock
failure with specified values of overburden stress,
stress ratio, and coefficient of friction. Corres-
ponding Mohr's circle plots and failure thresholds
for Devonian shale have been presented by Andrews
[18]. Eq.(2) can serve as a diagnostic indicator of
the inherent natural fracture potential of a forma-
tion, as illustrated in Fig. 7b. As previously noted,
the gravitational loading model merely provides cali-
brative stress response data relative to the selected
material properties. The tectonic model with stress
boundary conditions prescribed at both ends simulates
an artificially isolated structure. However, this
model furnishes sound mechanistic information perti-
nent to a reduced stress ratio over the abutment.

The tectonic model, including decollement effects,
with loading applied at the Southeast and normal dis-
placement constraint at the Northwest boundary seem~
ingly represents a physically more realistic case.

A parametric sensitivity study for this model demon-
strated that with a highly reduced modulus in Unit 6

and lumped Poisson's ratio of 0,35 in Units 3 through
5, a stress ratio of 0,70 in the Northwest can be
approached.

The preceding simulations serve to illustrate
the facilitating characteristics of the finite element
model in predicting governing stress mediated mech-
anisms and in situ stress trajectories for layered
geological formulations. The applicability of this
methodology for gross in situ stress predictions for
large scale cross-sections cannot yet be demonstrated
because of the complexities associated with evalua-
tion, stress history and boundary/interface condi-
tions. Towse [21] has discussed these factors for
low permeability upper cretaceous gas reservoirs in
the Rocky Mountains by considering the rock proper-
ties and associated structures. The development of
various faults (normal, overthrust, strike-slip) and
reservoir fracture pattern correlations, from the
vantage point of estimated in situ stress fields, has
also been presented. Similar analysis, employing

will be very fruitful in defining joint/fracture
orientations and extent. Finally, the presented
techniques in conjunction with limited in situ stress
field data, can be used for the preliminary stress
analysis of mineback field sites, oil/gas reservoirs,
and coal beds.

NOMENCLATURE
Co Uniaxial compressive strength
E Elastic modulus
=03/c1 Stress ratio
9 Effective overburden stress
Oy ) Effective minimum horizontal stress
Mg Coefficient of friction

v Poisson's ratio

This research was sponsored by the U.S. Depart-
ment of Energy under Contract DE-AC21-83-MC20338.
Computational facilities were provided by IRCC at
The Ohio State University.
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TABLE I11

TABL C ted Sh C ive Strengths for
REFERENCES TO IN SITU STRESS s E IV Compute ale Compressive Streng or

Specified o,, K, and ug=tang

el 2dS

1!
Plote Hmax Azmith Hnin Depth v Stress Re'fenence
Ref. (psi) (psi) (feet) (psi) Ratio
I 5901 NSOE 5 2610 2755 3036 .86 Haimson 1977 :
Devonian Shale oy = 5500 psi
Middle of Devonian Shale
2 43%0 NSOE 5 2360 2745 3210 .73 Terra Tek 1977
Devonian Shale
] K=.2 .3 4 .5
3 3332 N5S0E 5 2374 2746 3095 .77 Lindner &
Halprin 1978 -
Devonian Shaie 15:: 3632 2698 1764 829
4 - - - - - - Cliffs Minerals
1982 20° 3256 2134 1012 -
5 2305 N5 2W 1677 1100 1240 1.35*  Tosco/Agapito 30° 2200 550 -
1980
: Coal 40° 442 -
6 3172 N75E 1890 1100 12640 1.52% 'll’gsgo/AgopHo
8
Coal
7 3380 N68E 2459 863 973 2.53+ TgscoIAgopito
1980
Coal
8 3339 N5 9E 2515 830 935 2.69* Tosco/Agapito
é:g(”) o1= 7000 psi .
Bottom of Devonian Shale
9 3815 NS7E 3101 1140 1285 2.4)% ‘II';;:;oIAgopito
Coal
2 v K= .2 .3 .4 .5
10 - - - - - - Cliffs Minerals
. 1982
15° 4622 3433 2244 1055
1 - - - - - - Cliffs Minerals
1982 20° 4145 2717 1289 -
12 - - - - - - Cliffs Minerals 30° 2800 700 -
1982
40° 561 -
® Calcuiated based on ovg. sp. weight = 162 Ibs/cf
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Fig. 1—Map of Kanawha County, WV, with cross-section locations.
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